Evaluating Regional Emission Estimates Using Field Observations

G.R. Carmichael¹, D.G. Streets², J.-H. Woo¹, Y. Tang¹, I. Uno³, G. Kurata⁴, N. Thongboonchoo¹, and the Trace-P and Ace-Asia Science Teams

> ¹University of Iowa ²Argonne National Laboratory ³Kyushu University, Japan ⁴Toyohashi University of Technology, Japan

> > NARSTO Emission Inventory Workshop University of Texas, Austin

> > > October 14-17, 2003

What Do The Observations and Models Tell Us About Emissions?

Freidli et al., JGR submitted

Schematic of Analysis

Example of Use of Model with Emission Markers Frontal outflow of biomass burning plumes east of Hong Kong

Large-Scale **Structure is Captured** by Model – but Peaks are Underestimated

Under-predicted Points Are in the Yellow Sea

Longitude (degree)

Observed and Modeled Ratios Can Be Classified By Source Region Using Trajectories - Age Can Also Be Estimated

The BC and CO Concentrations are Under-predicted – but the Ratios are Accurately Captured

$\Delta BC/\Delta CO$

		Ratio	R-square
Shanghai	Obs	0.0107	0.9556
	Model	0.0092	0.8772
	Emission	0.0083	
Tianjian	Obs	0.0102	0.8266
	Model	0.0084	0.6412
	Emission	0.014	
Tokyo	Obs	0.0226	0.8793
	Model	0.0205	0.9412
	Emission	0.0193	
Pusan	Obs	-0.016	0.06351
	Model	0.0072	0.3258
	Emission	0.0159	
Qingdao	Obs	0.0186	0.02618
	Model	0.0076	0.7707
	Emission	0.0148	

This analysis suggests we need to look for improvements in a specific sector

Domestic Sector??

Averaged BC Change (%) in 1km Level after Doubling Domestic Emissions

Simulated and Observed BC during DC-8 Flight #9 (03/10/2001)

The Importance of Fossil, Biofuels and Open Burning Varies by Region -- Richness of Emissions Data Base Can be Exploited

Lan Userur Emissions Information Be Reconstructed Using Observed Ratios (or Concentrations)?

Regional Emission Signals Can be Identified and Tested

Two Relationships Are Observed Red Points Come From SE Asia –With Heavy Influence From Biomass Burning

Improvements in Emissions Require Creative Combination of Bottom-Up and Top-Down Approaches

U. Iowa/Kyushu/Argonne/GFDL

With support from NSF, NASA (ACMAP, GTE), NOAA, DOE, JST