Characterizing Airmass Outflow using Daily Biomass Burning Emission Inventories in Support of Flight Measurement Campaigns

J. Woo¹, G. Carmichael¹, D. Streets², G. Kurata³, Y. Tang¹

¹Center for Global and Regional Environmental Research, University of Iowa, Iowa, USA
²Decision and Information Sciences Division, Argonne National Laboratory, Argonne, IL, USA
³Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi, Japan
⁴Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan

NARSTO Workshop on Innovative Methods for Emission-Inventory Development and Evaluation

> University of Texas, Austin October 14-17, 2003.

1. Emissions estimation

Schematic methodology for the development of Asian emission estimates

- Develop/manipulate emissions inventory that could support field measurement campaigns
- Analyze developed emissions inventory itself
- Finding airmass characteristics by integrating information from emissions, transport models, and other analysis.

Data Sources

Energy/Emission data

- Emission by administrative boundaries : ANL (Dr. David Streets)
- Large Point Sources(LPSs) : China-Map, Rains-Asia
- Volcano emission data : GEIA, CRIEPI, Volcano world
- Geographical information system(GIS) data
 - Population and Landcover : ORNL
 - Admin. Boundaries, Road, Ship lanes : Digital Chart of the World (DCW), IIASA
- Remote sensing(RS) data
 - AVHRR Fire count/Cloud/Satellite coverage data : WFW
 - TOMS AI : NASA
- Other data
 - Precipitation data : NCEP
 - Oil/Gas/Mineral database : USGS

Data used for allocation

emissions allocation

Spatial allocation methodology (Anthropogenic)

Spatial & temporal allocation methodology

(Biomass Burning, Y1999 & Y2000)

Test of Biomass burning Emissions

Comparison of country surveys with various AVHRR fire-count adjustments reveals problem areas for further investigation

FC from oil & gas drilling sites

2. Inventory features

Daily biomass burning distribution

(150,55)

(60.55)

Biomass burning CO emissions during March 1st~21st, 2001. Shown are the distributions averaged over 3-days periods

CO emissions by emission categories

Cluster analysis

Chemical groups identified from hierarchical cluster analysis

Regional groups identified from hierarchical cluster analysis

Label

Vietnam

Rescaled Distance Cluster Combine

Spatial and Sectoral composition

Source profiles from regional groups (left : major species, right : NMVOC species)

3. Analysis of Source Signitures

Selected flight points

Back trajectory and CMB * analysis

* Chemical Mass Balance Model

2-D and 3-D analysis features for DC8 flight 6 (March 4th).

Source sector contribution by CMB model and 5day 2-D back trajectories color coded by STEM-III CO concentration.

- * 3-D back trajectories (5-day) colored with measured trace gas mixing ratio (light purple line: 4.6GMT, purple line: 5.2GMT, red line: 6.9GMT, green line: 7.0GMT)
- * Emissions : fossil fuel (light blue dots), biofuel (yellow dots), biomass burning (red dots)
- * Background map topography colored by landcover

Back trajectory and CMB analysis

2-D and 3-D analysis features for DC8 flight9 (March 10th)

Left: same as previous figure, but (light blue: 3.3GMT, red: 3.5GMT, light red: 5.2GMT, orange: 7.6GMT, yellow: 7.9GMT), Right: same as previous figure.

Back trajectory and CMB analysis

2-D and 3-D analysis features for DC8 flight8 (March 9th)

Left: same as previous figure, but (light blue: 3.4GMT, purple: 3.3GMT, red: 2.5GMT); Right: same as previous figure.

Back trajectory and CMB analysis

2-D and 3-D analysis features for DC8 flight10 (March 13th) and DC8 flight 12 (March 18th)

Left: same as previous figure, but (yellow: flight10-5.5GMT, orange: flight12-3.5GMT, red: flight12-5.2GMT, purple: flight12-5.7GMT), Right: same as previous figure.

Intercomparison with others

- P-3B flight aerosol measurement data (dK^+/dSO_4^{2-}) [Ma et al., 2003]
- CH₃CN/SO, SO_y/CO, and C₂Cl₄/CO ratios ratios for DC8 flight 6 (high fossil fuel source contribution) and for DC8 flight 8 (high biomass combustion source contribution)
- Biomass burning emission sensitivity tests using 3D chemical models (STEM 2K1, The Models-3 : CMAQ)

Summary

• In general, Asian outflow is usually a complex mixture of biofuel, biomass and fossil sources.

• Intercomparison of AVHRR fire count with country surveys (biomass burned) has been used to analyze problem areas and thus enhance data quality for both sides.

• Biomass burning emissions could affect ambient concentration even to the distant flight track point.

• Flights in the regions at high latitudes and low altitudes were found to have a high contribution of fossil fuel emissions.

• Flights in the warm sector of cold fronts were dominated by biomass burning contributions (about 70%).

• Biofuel contributions were high (about 70%) when air masses come from central China.