

Sesquiterpene emissions and secondary organic aerosol formation potentials for southeast Texas

William Vizuete Victoria Junquera

THE UNIVERSITY OF TEXAS

- Estimate sesquiterpene emissions from vegetation in Houston-Galveston area (HGA)
- Assess potential contribution to Secondary Organic Aerosol (SOA)

69,440 square kilometer domain for biogenic emission modeling.

TERPENES: isoprene (C₅H₈) building blocks **MONOTERPENES:** 2 blocks $\rightarrow C_{10}H_{16}$ SESQUITERPENES: 3 blocks $\rightarrow C_{15}H_{24}$ α -COPAENE a-CEDRENE **ß**-pinene a-pinene a-HUMULENE **6-CARYOPHYLLENE** LONGIFOLENE

Atmospheric reactions with O₃, NO₃, and OH radicals

 Less volatile reaction products condense onto atmospheric particles resulting in aerosol formation

BVOCs are significant SOA precursors

Product of α -cedrene reaction with O_3

keto-aldehyde.

pMC vs. EC/TC Ratio

Importance of precursors to SOA formation

- 1. Overall aerosol potential
- 2. Atmospheric emissions
- 3. Presence of other initiating reactants (O₃, OH, NO₃, sunlight, acid catalysts)

Gas-phase reaction with ozone

BVOC concentration = 100 ppb

BVOC	Yield
Sesquiterpenes	~100%
Cyclic Monoterpenes with two double bonds	~40%
Monounsaturated cyclic monoterpenes	5-25%
Open Chain Hydrocarbons	~5%

Source: Hoffmann et al. (1997)

South east Texas Biogenic Mixture (Modeling Results)

	Initial	With St Emissions
Isoprene	81%	66%
Monoterpenes	11%	9%
OVC	9%	7%
Sesquiterpenes	0%	17% (-30%)

Global Biosphere Emissions and Interaction System

- Microsoft Access Based Model
- Estimates Biogenic Emissions
 - Plant species
 - Plant biomass
 - Soil type
 - Ambient temperature
 - Solar radiation

 Design to use in combination with photochemical modeling systems for ozone and particulate matter

Previous GloBEIS simulations

- Isoprene predictions in eastern Texas
 - Magnitude Less than a factor of two (Allen *et al.*, 2002)
 - Spatial distribution Confirmed by aircraft observations (TexAQS 2000)
 - "Comparison of Biogenic Isoprene Emission Estimates with Aircraft Measurements during the Texas Air Quality Study," Jihee Song UT-Austin.
- Same calculation procedures for sesquiterpene
 - Rough estimate of magnitude
 - Spatial distribution

land cover input UT GIS landuse/landcover database

Describes land coverage/ Emission factor
Developed by UT-Austin/ENVIRON for TCEQ study
Texas and Mexico - 1 kilometer resolution
Formatted for direct compatibility with GloBEIS

Source: Yarwood et al., 1999b; Wiedinmyer et al., 2000

Family	Genus	Species (Botanical Name)	Species (Common Name)	Emission per species (µg/gdl-hr)	Emission per family (µg/gdl-hr)	Emission per genus (µg/gdl-hr)
Asteraceae	Baccharis	B. halimifolia	Bush (Salt)	15.00		15.00
	Carthamus	C. tinctoreus	Safflower	0.24	5.51	0.24
15 81	Artemesia	A. tridentata	Sagebrush (Big)	1.30		1.30
	Alnus	A. incana	Alder (Speckled)	0.30		0.30
Potulogooo	Betula	N/A	Birch	0.03	0.20	0.03
Detulaceae	Cominua	C. betulus	Hombeam	0.02	0.29	0.41
13 Nr	Carbuirte	C. caroliniana	Ironwood	0.80		0.41
Ericaceae	Ledum	L. groenlandicum	Tea (Labrador)	14.00	14.00	14.00
Fabaceae	Medicago	M. sativa	Alfalfa	0.06	0.06	0.06
		Q. velutina	Oak (Black)	8.50	-	
Forman	011040110	Q. gambelii	Oak (Gamble)	1.50	22.65	22.65
Lagaceae	Quercus	Q. stellata	Oak (Post)	78.00	22.05	
		Q. alba	Oak (White)	2.60		
Juglandaceae	Juglans	J. regia	Walnut (Hartley)	0.19	0.19	0.19
Malvaceae	Gossupium	G. hirsutum	Cotton (Pima)	0.09	0.09	0.09
Myrtaceae	Callistemon	C. nauseosus	Brush (Rabbit)	3.20	3.20	3.20
Oleaceae	Olea	O. europea	Olive (Manzanillo)	0.05	0.05	0.05
· · · · · · · · · · · · · · · · · · ·	Abies	A. lasiocarpa	Fir (Subalpine)	0.80		0.80
	Tsuga	T. canadensis	Hemlock (Eastern)	0.10		0.10
Pinaceae	Pinus	P. contorta	Pine (Lodgepole)	0.30	0.56	0.30
	Picea	P. egelmanii	Spruce (Eaglemann)	0.10		0.80
	Picea	P. glauca	Spruce (White)	1.50		0.80
	Prunus	P. avium	Cherry (Bing)	0.10		
Rosaceae		P. serotina	Cherry (Black)	3.80	10.42	1.57
		P. persica	Peach (Halford)	0.80	19.45	
	Rubus	R. idaeus	Raspberry (Red)	73.00		73.00
Rhamnaceae	Ceanothus	C. leucodermis	Whitehom 0.25 0.25		0.25	0.25
Solanaceae	Imageneration	L. lycopersicum	Tomato (Sunny)	0.41	0.44	0.44
	Lyconpersion	L. lycopersicum	Tomato (Canning)	0.47	0.44	S
Vitaceae	Vitis	V. vinifera	Grape (Columbard)	0.16	0.16	0.16

Source: Winer et al. 1992, König et al. 1995, Helmig et al.1999

30 species 14 families 22 genera

 Sesquiterpene emission factors were assigned based on taxonomic relationships

- Emission factor of zero assigned if no data
 - 45% of land cover types
 - Sensitivity analysis Median value family level emission factors reassigned to each land cover
- EF Normalized to a standard temperature with dependence model based on monoterpene
- No PAR Dependence

uncertainty

- Experimental emission factors
 - Winer et al., (1992) factor of five
 - Helmig et al. (1999) factor of two
 - König *et al.* (1995) author did not characterize uncertainty

Family	Genus	Species (Botanical Name)	Species (Common Name)	Emission per species (µg/gdl-hr)	Emission per family (µg/gdl-hr)	Emission per genus (µg/gdl-hr)
Asteraceae	Baccharis	B. halimifolia	Bush (Salt)	15.00		15.00
	Carthamus	C. tinctoreus	Safflower	0.24	5.51	0.24
	Artemesia	A. tridentata	Sagebrush (Big)	1.30		1.30
Betulaceae	Alnus	A. incana	Alder (Speckled)	0.30		0.30
	Betula	N/A	Birch	0.03	0.20	0.03
	Carpinus	C. betulus	Hombeam	0.02	0.27	0.71
		C. caroliniana	Ironwood	0.80		0.41
Ericaceae	Ledum	L. groenlandicum	Tea (Labrador) 14.00 14.0		14.00	14.00
Fabaceae	Medicago	M. sativa	Alfalfa	0.06	0.06	0.06
Fagaceae	Quercus	Q. velutina	Oak (Black)	8.50		
		Q. gambelii	Oak (Gamble)	1.50	22.65	22.65
		Q. stellata	Oak (Post)	78.00	0.02	26.00
		Q. alba	Oak (White)	2.60		

•Average emission factor values

- Quercus velutina
- Quercus gambelii
- Quercus alba
- Average family emission value: 4.2 µg-C/gdl-hr

Scenario	Total sesquiterpene emissions in domain (kg C/hr)	Average sesquiterpene emissions flux (kg C/km ² -hr)
Total Sesquiterpenes (upper bound emission factor)	4.5*10 ⁴	0.65 (0 – 4.4)
Total Sesquiterpenes (mean bound emission factor)	2.3*10 ⁴	0.32 (0 – 2.2)
Total Sesquiterpenes (lower bound emission factor)	1.1*10 ⁴	0.16 (0 – 1.1)
Total Sesquiterpenes (mean bound emission factor with modified oak)	4.9*10 ³	0.07 (0 – 0.4)

T= 30 °C with a cloudless sky at noon for a 69,440 square kilometer region

Simulation	Biogenic SOA formation rates (kg C/day)		Biogenic SOA formation flux (kg C/km ² -day)		
	sesquiterpene	monoterpene	sesquiterpene	monoterpene	
1. Upper bound emission factor	8.7*10 ³	23.6	4.5	1.2*10 ⁻²	
2. Reported emission factor	4.3*10 ³	23.6	2.3	1.2*10 ⁻²	
3. Lower bound emission factor	2.2*10 ³	23.6	1.1	1.2*10 ⁻²	
4. Reported emission factor with modified oak	8.7*10 ²	23.6	0.46	1.2*10 ⁻²	

- 1,920 square kilometer region
- Effective emission period of 8 hours
- All formation potential from other BVOC was neglected
- Conversion from sesquiterpenes to SOA 100 percent

Red square indicates 1,920 square kilometer domain for biogenic SOA calculations

observed aerosol data

Diesel fuel consumption and elemental carbon emissions from combustion in Houston area

 600 kg-elemental carbon/day
 Annual average concentration of elemental carbon 1.6 µg-Carbon/m³

SOA emissions [kg - C/day] $\left[\frac{1.6 \text{ mg} - \text{C/m}^3}{600 \text{ kg} - \text{C/day}}\right] = \text{SOA concentration} \left[\text{ mg} - \text{C} \text{ m}^3\right]$

Biogenic SOA Concentration (mg-C/m ³) (Lower Bound)	5.8
Biogenic SOA Concentration (mg-C/m ³) (Normal Bound)	11.5
Biogenic SOA Concentration (mg-C/m ³) (Upper Bound)	23.2
Biogenic SOA Concentration (mg-C/m ³) (Normal Bound with Modified Oak)	2.3
Average above-canopy Aldine: 2.1	mg/m ³

concentration of geologically modern Conroe: 2.7 mg/m³

conclusions

- Emission peaks coincided for sesquiterpenes and isoprene
- High uncertainty for post oak (quercus stellata)
 - More than a factor of ten larger other oak species
 - Recalculated without value for post oak sesquiterpene emissions dropped by a factor of five for entire modeling domain
- Sesquiterpene emissions predicted using mod. oak were reasonably consistent with measurements of geologically modern carbon in ambient aerosol

conclusions

- Sesquiterpenes exceed monoterpenes in emission strength and yield suggesting that ST are important contributor to aerosol rates in southeast Texas
- ST emission factor data
- Confirm model predictions with aircraft aerosol data

TexAQS 30 AUG 2000

acknowledgements

David T. Allen Victoria Junquera Yosuke Kimura

Greg Yarwood

Christine Wiedinmyer

Christoph Senff