

PI-SWIRL:

A New Technique for Measuring Wind Blown Dust Emission Potential

<u>Vic Etyemezian</u>, Sean Ahonen, John Gillies, Hampden Kuhns, Hans Moosmüller, Djordje Nikolic

DRI, Las Vegas, NV 89119

and

Marc Pitchford NOAA, Las Vegas, NV 89119

Sources of Windblown Dust

- Windblown dust
 - Vacant lands: Human disturbance makes it worse
 - Storage Piles
 - Construction sites
- Windblown Dust Requires wind
 - Emission Factor = $k \sum_{i=1}^{N} P_i$ where N is # disturbances/yr

-
$$P = 58(u^* - u_t^*)^2 + 25(u^* - u_t^*)$$
 e.g. AP-42

Mechanisms of Windblown Dust Suspension

- "Creep"
 - ♦0.5 2 mm particles roll due to pressure differential
- "Saltation"
 - ✤0.1 0.5 mm particles suspended, travel parallel to ground 1-5 m, re-impact
 - Cause release of additional particles
- "Emission"
 - ✤0.001 0.1 mm particles suspended and transported between 10 – 10,000 m

USDA-ARS Wind Erosion Research Unit http://www.weru.ksu.edu/vids

Measurement of Wind Erosion

- Measure What/Why:
 - Threshold friction velocity
 - Emissions at given friction velocity
 - Emissions dependence on
 - Surface parameters (texture, moisture, vegetative cover), location, time of year
 - Substantial heterogeneities make exhaustive test matrix difficult
 - Information necessary for accurate modeling

In-Situ Surface Stability Tests

- Several Alternatives
 - Large Wind Tunnel (LWT): Probably best method, but requires ~10-30 man hours per sample location
 - Small Wind Tunnel (SWT): Less accurate than LWT, but requires less time
 - PI-SWIRL: Comparable to Small Wind Tunnel; requires ~10 minutes per sample; potentially man-portable

LWT at Ft. Bliss, TX

- •J. Gillies and B. Nickling testing emission flux potential
- •LWT is closest measurement to a "standard"
- •SWT e.g. D. James (UNLV), D. Gillette (NOAA)

•Concerns with boundary layer development, maximum wind speeds, and accounting for saltation

<u>Portable In-Situ Wind Erosion Laboratory:</u> The PI-SWIRL concept

Philosophy: Don't try to simulate atmospheric flow, instead simulate shear stress experienced by soil surface (i.e. u^{*})

PI-SWIRL Schematic

Side View

Bottom View

PI-SWIRL v.2

Wind Vectors in PI-SWIRL

The PI-SWIRL-ogram

PI-SWIRL-ogram Parts

PI-SWIRL: Advantages/Disadvantages

- Advantages:
 - Fast, semi-portable, measures index based on shear stress
 - Symmetry bypasses boundary layer issue
 - Geometry allows simulation of "saltation-like" emissions
- Disadvantage: At present relative standard
 - calibrate against LWT?
 - characterize shear stresses distribution with
 - Internal sensors?
 - Modeling?

Interpreting In-Canopy Data

SWIRLER: Future priorities

- 1. Characterize shear stresses/flow as f(RPM)
- 2. Establish equivalent emission factors
- 3. Investigate importance of dimensions
 - a. Does height have effect on measurement?
 - b. Should rotor blade be wider/narrower?
 - c. How small can you go without losing physics?
- 4. Establish equivalent u_t^* for in-canopy work
- 5. Replace DustTrak with rugged light-based measure

Thank you

- DRI
- Encapco Inc NTS Soil Stabilization