Assembling Emission Inventories of Primary Carbonaceous Aerosols

D.G. Streets¹, T.C. Bond², G.R. Carmichael³, J.-H. Woo³, and Z. Klimont⁴

¹Argonne National Laboratory ²University of Illinois at Urbana-Champaign ³University of Iowa ⁴International Institute for Applied Systems Analysis, Austria

> NARSTO Emission Inventory Workshop University of Texas, Austin

> > October 14-17, 2003

James Hansen's "Alternative" Scenario (released August 29, 2000)

"Our analysis of climate forcings suggests, as a strategy to slow global warming, an alternative scenario focused on reducing non-CO₂ GHGs and black carbon (soot) aerosols.... (R)eductions in tropospheric ozone and black carbon would not only improve local health and agricultural productivity but also benefit global climate and air quality."

J. Hansen, M. Sato, R. Ruedy, A. Lacis, and V. Oinas, Global warming in the twenty-first century: an alternative scenario, Proceedings of the National Academy of Sciences, 97, 9875-9880, 2000

The biggest source of BC is residential burning of coal and biofuels in developing countries (not power plants)

Calculation of BC and OC emission factors (g kg⁻¹ of fuel burned)

$EF_{BC} = EF_{PM} \times F_{1.0} \times F_{BC} \times F_{cont}$

$EF_{OC} = EF_{PM} \times F_{1.0} \times F_{OC} \times F_{cont}$

where:

 $\begin{array}{ll} \mathsf{EF}_{\mathsf{PM}} &= \mathsf{bulk} \ \mathsf{particulate} \ \mathsf{emission} \ \mathsf{factor} \ (\mathsf{usually} \ \mathsf{PM}_{10}) \\ \mathsf{F}_{1.0} &= \mathsf{fraction} \ \mathsf{of} \ \mathsf{the} \ \mathsf{emissions} \ \mathsf{that} \ \mathsf{are} < 1 \ \mu\mathsf{m} \ \mathsf{in} \ \mathsf{diameter} \\ \mathsf{F}_{\mathsf{BC}}, \ \mathsf{F}_{\mathsf{OC}} &= \mathsf{fraction} \ \mathsf{of} \ \mathsf{the} \ \mathsf{particulate} \ \mathsf{matter} \ \mathsf{that} \ \mathsf{is} \ \mathsf{carbon} \\ \mathsf{F}_{\mathsf{cont}} &= \mathsf{fraction} \ \mathsf{of} \ \mathsf{the} \ \mathsf{fine} \ \mathsf{PM} \ \mathsf{that} \ \mathsf{penetrates} \ \mathsf{any} \ \mathsf{control} \\ \mathsf{device} \ \mathsf{that} \ \mathsf{might} \ \mathsf{be} \ \mathsf{installed} \end{array}$

Examples of EF_{PM} (g kg⁻¹) and fractions used to develop the BC and OC emission factors

Fuel/Technology	EF				<u> </u>
			_		
Biofuel stove	10	0.85	0.1	0.6	1.0
Biofuel stoker	2.2	0.86	0.05	0.2	0.4-1.0
Briquettes	2.5	0.25	0.01	0.02	0.3-1.0
Brown coal stoker	17	0.11	0.05	0.66	0.06-1.0
Hard coal stoker	4.2	0.33	0.1	0.02	0.05-1.0
Hard coal PC	12	0.09	0.006	0	0.05-0.9
Heavy fuel oil	1.1	0.45	0.08	0.03	0.13-1.0
Kerosene stove	0.9	1.0	0.13	0.1	1.0
Natural gas	0.002	1.0	0.06	0.5	1.0
Solid waste open burn	30	0.5	0.37	0.37	1.0

Examples of calculated EF_{BC} (g kg⁻¹) for various fuels and sectors

Fuel	Residential	Industry	Power	Transport
Wood	0.3-1.4	0.08-0.55	0.044	
Ag waste	1.0			
Briquettes	0.15	0.005	0.011	
Brown coal	0.18	0.001-0.015	0-0.002	
Hard coal	0.89-5.4	0.007-1.2	0.008-1.2	3.0
Diesel oil	0.06-4.0	3.4-4.4	0.25	1.3-3.6
Gasoline, etc.	0.9	0.14		0.08-0.43
Natural gas	0	0	0	0
Solid waste	4.2	0.013	0.013	
Open biomass burning	0.48 (savanna)	0.69 (crop resid	dues) 0.56-0.6	1 (forests)

Emissions are gridded using total population distribution, except for the following cases that use other proxies:

- Residential sector (fires/stoves)
- Open waste burning
- Agricultural diesel use
- International shipping
- Forest burning
- Savanna burning
- Ag waste burning

rural population urban population agricultural landcover shipping lanes forest landcover* savanna landcover* agricultural landcover*

*Adjusted by AVHRR fire counts for 1999-2000

Global distribution of BC emissions from fuel combustion (ng m⁻² sec⁻¹)

Global distribution of BC emissions from open biomass burning (ng m⁻² sec⁻¹)

Global distribution of OC emissions from fuel combustion (ng m⁻² sec⁻¹)

Global distribution of OC emissions from open biomass burning (ng m⁻² sec⁻¹)

Sector and region contributions to global BC emissions

Sector and region contributions to global OC emissions

Comparison of BC emissions (Gg yr⁻¹) in this inventory with Cooke et al. (1999) & Liousse et al. (1996), as used in many global model studies

Fuel/Sector	This work	Previous84	Previous96
Coal/power generation	7) (1594
Coal/power generation	610	2840	1194
Coal/mustrial	517		761
Coalifesidential	517	J	/01
Diesel/on-road	907)	1917
Diesel/residential	98	ل 1710 J	369
Diesel/off-road	682		696
		J	~
Gasoline/transport	108		41
			-
Wood/residential	877		1921
Dung/residential	208	<u> </u>	417
Ag waste/residential	393	J	90
Open burning/crop residues	327	530	356
Open burning/savanna	1726	2170	2912
Open burning/forests	1244	1930	2980
Other	354		447
Total	8058	10700	15682

Reasons for major differences between this inventory and previous work (Cooke et al., 1999; Liousse et al., 1996)

Fuel/Sector	<u>ΔPrev96</u>	<u>Reason</u>
Coal/Power generation	~1500 Gg	PM was assumed to be 25% BC, 25% OC. No measurements support this assertion. PM is mostly mineral matter.
Diesel/Residential	~250 Gg	Engine emission factors were applied to residential use of diesel. These are not appropriate for home furnaces.
Diesel/On-road	~1000 Gg	BC emission factor assumed to be 10 g/kg in developing countries. <i>No measurements</i> support this value – even studies targeting polluting vehicles in developing countries.
Wood/residential	~1000 Gg	PM emission factors from fireplace combustion were used for cooking stoves. Measurements show that cookstove emission factors are much lower.
Open biomass burning	~3000 Gg	New emission factors from Andreae and Merlet (2001)

The BC/OC regional model begins by importing energy use from international statistics or global energy forecasts (Gg fuel)

Master	Sector / Fuel	Canada		Central	South	Northern	Western	Eastern	Southern
Code	Туре	Canada	05A	America	America	Africa	Africa	Africa	Africa
	Power	77382	1698040	260979	198110	156495	27368	4682	353502
68	Biofuel	2132	72240	14415	28573	0	0	0	0
76	Briquettes	212	990	0	497	0	0	0	0
83	Brown Coal	16110	120672	0	0	0	0	0	0
51	Coking Coal	0	0	0	0	0	0	0	0
57	Diesel Fuel	309	4023	11793	12303	15619	6675	2784	437
63	Hard Coal	53210	1211426	56738	54449	16810	6768	0	351266
50	Heavy Fuel Oil	1819	118773	155555	38284	61612	6317	1898	1140
47	Natural Gas	3589	128786	22478	64003	62454	7608	0	658
65	Waste, Municipal	0	41130	0	0	0	0	0	0

Technology splits reflect scenario, regional, and technology differences

Tech	Fueld	Combustor/Control	Conodo		Central	South	Northern	Western	Eastern	Southern
Code	Fueri	Compusion/Control	Canada	U3A	America	America	Africa	Africa	Africa	Africa
Power										
68	Biofuel	General	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
117	Briquettes	Stoker/Cyclone	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
41	Brown Coal	Pulverized Coal/Cycl	0.000	0.000	0.200	0.200	0.200	0.200	0.200	0.200
39	Brown Coal	Pulverized Coal/ESP	0.995	0.995	0.600	0.600	0.600	0.600	0.600	0.600
40	Brown Coal	Pulverized Coal/Scrub	0.000	0.000	0.150	0.150	0.150	0.150	0.150	0.150
72	Brown Coal	Stoker/Cyclone	0.005	0.005	0.030	0.030	0.030	0.030	0.030	0.030
119	Brown Coal	Stoker/ESP or Filter	0.000	В	ia issue	is the i	rate of	0.000	0.000	0.000
71	Brown Coal	Stoker/Scrubber	0.000	r	nenetration of better				0.020	0.020
51	Coking Coal	General	1.000		technologies in the future					1.000
66	Coking Coal	Stoker/Scrubber	1.000							1.000
57	Diesel Fuel	General	.000	(or	MIX OT I	ecnnoi	ogies in	1.000	1.000	1.000
112	Hard Coal	Cyclone/Cyclone	0.000		the past)				0.050	0.050
110	Hard Coal	Cyclone/Filter or ESP	0.000	0.000	0.050	0.050	0.050	0.050	0.050	0.050
22	Hard Coal	Pulverized Coal/Cycl	0.000	0.000	0.100	0.100	0.100	0.100	0.100	0.100
20	Hard Coal	Pulverized Coal/ESP	0.960	0.960	0.500	0.500	0.500	0.500	0.500	0.500
21	Hard Coal	Pulverized Coal/Scrub	0.000	0.000	0.250	0.250	0.250	0.250	0.250	0.250
69	Hard Coal	Stoker/Cyclone	0.020	0.020	0.030	0.030	0.030	0.030	0.030	0.030
19	Hard Coal	Stoker/ESP or Filter	0.020	0.020	0.000	0.000	0.000	0.000	0.000	0.000
70	Hard Coal	Stoker/Scrubber	0.000	0.000	0.020	0.020	0.020	0.020	0.020	0.020
50	Heavy Fuel Oil	General	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
47	Natural Gas	General	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
65	Waste, Municipal	General	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Work in progress suggests that energy use will drive emissions up in the future, while improvements in technology performance will drive emissions down. It is likely that the net result will be stability or a decline in BC emissions in the future, depending on scenario (stay tuned)

Two urgent needs are to do more source testing in the developing world and to survey emitting sources

Representativeness of entire population of sources

Typical operating practices

Typical fuels and fuel characteristics

Relationship to similar sources in the developed world

Daily and seasonal operating cycles

