Analysis of Motor Vehicle Emissions in a Houston Tunnel

Gary McGaughey, Nimish Desai, and Dave Allen (UT-Austin) Bob Seila (EPA) Bill Lonneman (NERL) Matt Fraser (Rice University) Rob Harley (UC Berkeley) Alison Pollack (ENVIRON) Jim Price and Jason Ivy (TCEQ)

Tunnel Characteristics

- Runs N-S beneath Houston Ship Channel between Galena Park and Pasadena
- Two-lane, bi-directional, single bore
- 895 meters in length
- Maximum height of 5.5 meters
- 6 percent grade
- Forced longitudinal ventilation via automatic blower fans

Sampling Periods

- Collected measurements on four consecutive days: Aug 29, 2000 (Tuesday) through Sept 1, 2000 (Friday)
- Two sampling periods each day (higher heavyduty diesel fraction during mid-day period)
 - 1200 CDT 1400 CDT
 - 1600 CDT 1800 CDT

Measurements

- NO_x
- Carbonyls
- CO/CH₄/CO2
- Speciated hydrocarbons
- PM _{2.5} (mass, EC, OC)
- Ammonia
- FTIR analysis of size segregated PM (aliphatics, carbonyls, and organonitrates)

Traffic Monitoring

- VHS tapes captured video data recorded by surveillance camera at north entrance
- Observers counted vehicles for each lane of traffic (incoming and outgoing)
- Vehicles were visually classified using four vehicle type categories

Vehicle Type Categories

- Cars and jeeps
- Light-duty trucks
- Medium-duty trucks (passenger trucks with 2 axles and six wheels)
- Heavy-duty trucks (3 or more axles)

Total Traffic Volumes and Percent Vehicle Type by Sampling Period

Date	Time	Total Vehicles	Cars &	LD	MD	HD
	(Local)	v chicles	(%)	I rucks	I rucks	I rucks
				(%)	(%)	(%)
8/29	12-2*	403	42.7	51.4	0.7	5.2
	4-6	4766	45.4	51.7	0.6	2.3
8/30	12-2	2152	45.5	47.8	0.7	6.1
	4-6	4621	44.5	52.1	1.1	2.3
8/31	12-2	2272	46.3	48.1	1.4	4.3
	4-6	5244	44.7	52.5	0.8	2.0
9/1	12-2	2815	45.6	49.6	0.7	4.2
	4-6*	3186	49.0	49.1	0.5	1.4

Average Total Traffic Volumes and Percent Vehicle Type

Time (Local)	Total Vehicles	Cars & Jeeps (%)	LD Trucks (%)	MD Trucks (%)	HD Trucks (%)
12-2 pm	2364	45.0	49.2	0.9	5.0
4-6 pm	4867	45.9	51.4	0.8	2.0
TxDOT Harris County Registration Data					
		45.4	51	.9	2.2

Ratios of pollutant concentrations measured inside the tunnel to those measured in ambient air

	Tunnel/Background Ratio			
Pollutant	1200 - 1400	1600 - 1800		
	CDT	CDT		
CO ₂	1.71	2.14		
CO	14.7	16.8		
NO _x *	46	80		
NMOC	6.0	7.7		
PM _{2.5}	3.2	3.1		

Development of Fuel-Based Emission Factors for NO_x, CO, and NMOC

- By carbon balance, sum of background-corrected CO, CO₂, and VOC provides measure of fuel consumed
- Fraction of total C from heavy-duty vehicles during each two-hour sampling period estimated by % diesel and assumed fuel economies
- Use regression analysis to estimate light-duty vehicle emission factors

Carbon Monoxide

Oxides of Nitrogen

% of carbon from diesels

NMOC

PM2.5

% of carbon from diesels

Elemental Carbon

% of carbon from diesels

Calculated Light-Duty Vehicle Emission Factors

Dollutont	Emission Factor		
Fonutant	(g L-1)	(g km ⁻¹)	
СО	55	6.6	
NMOC	7.0	0.84	
NO _x	6.7	0.80	

Comparison of EF to previous tunnel studies [Adapted from Sawyer et al. (2000)]

Tunnel	Year	СО	NMOC	NO _x
Location	sampled	(g/L)	(g/L)	(g/L)
Tuscarora, Pa	1992	48	2.9	3.9
Baltimore, MD	1992	56/47	4.9/5.0	7.8/5.6
Oakland, CA	1994	77	3.7	7.5
Boston, MA	1995	45	4.5	9.3
New York, NY	1995	39	5.3	11.0
Phoenix, AZ	1995	45	6.1	8.4
Los Angeles, CA	1995	56	5.3	7.3
Van Nuys, CA	1995	91	6.8	7.6
Oakland, CA	1999	39	1.8	4.9
Houston, TX	2000	55	7.0	6.7

Comparison of MOBILE5b, MOBILE6, and Tunnel Emission Factors

- VMT calculated from tunnel population
- Age ready vehicle registration distribution was obtained for Harris County (2000) from TCEQ, and was input directly.

Default Settings

- I/M Programs
- Anti-Tampering Rates
- Basic Exhaust Emission rates
- Reid Vapor Pressure
- Operating Modes (hot vs. cold starts)

Assumptions

- One average speed for all vehicles
- Refueling and Idling emissions ignored
- Effect of oxygenated/reformulated fuels neglected
- A/C, Humidity, and Load corrections neglected

Emission Factors for Gasoline Vehicles (g/km)

	Tunnel	MOBILE5b	MOBILE6
NMOC	0.84	0.88	1.2
СО	6.6	6.4	14
NOx	0.80	0.96	0.89

HC Speciation Profiles Tunnel Emissions

Compound	Wt %
Isopentane	7.7
Methane	7.6
MTBE	6.5
Ethylene	5.4
Toluene	5.1
2,2,4-Trimethylpentane	3.1
Acetylene	3.0
2-Methylpentane	2.7
m-&p-Xylene	2.7
Isobutylene	2.6
Subtotal (top 10)	46%

HC Speciation Profiles Liquid Gasoline

Compound	Wt %
MTBE	10.9
Toluene	7.3
Isopentane	6.7
2,2,4-Trimethylpentane	5.5
2-Methylpentane	4.1
m-&p-Xylene	3.9
3-Methylpentane	2.7
2,3,4-Trimethylpentane	2.6
n-Hexane	2.5
n-Pentane	2.3
Subtotal (top 10)	49%

HC Speciation Profiles Gasoline Vapor

Compound	Wt %
Isopentane	23.2
MTBE	16.2
n-Pentane	6.1
2-Methylpentane	5.2
n-Butane	5.1
3-Methylpentane	3.1
2,2,4-Trimethylpentane	2.7
Toluene	2.6
2-Methyl-2-butene	2.5
n-Hexane	2.5
Subtotal (top 10)	69

Conclusions

- CO, NOx, and NMOC emission factors were calculated for light-duty vehicles
 - Washburn CO and NO_X are comparable to those reported in previous studies
 - Washburn NMOC is at high end of range compared to previous studies
- PM2.5 and EC increased as the fraction of heavy-duty vehicles increased

Conclusions (cont.)

- MOBILE6 predictions for CO over twice that provided by tunnel measurements and predicted by MOBILE5b
- HC Speciation profiles were developed for tunnel emissions, liquid gasoline, and gasoline vapor