Aerodyne Research, Inc.

Mobile Laboratory Mounted Fast Response Instrument Methods for On-Road Vehicle Emissions Measurements

C.E. Kolb, S.C. Herndon, J.B. McManus, J.H. Shorter, M.S. Zahniser, D.D. Nelson, J.T. Jayne, M.R. Canagaratna and D.R. Worsnop Aerodyne Research, Inc.

> B.K. Knighton Montana State University

E. Dunlea, M. Zavala, L.T. Molina and M.J. Molina Massachusetts Institute of Technology

Prepared for: NARSTO Emission Inventory Workshop on Innovative Methods for Emission Inventory Development and Evaluation University of Texas, Austin, TX

October 15, 2003

ARI-VGR-117ckdnsc

Aerodyne's 2nd Generation Mobile Laboratory

Mobile Lab sampling under stationary conditions at CENICA in Mexico City, April 2003

MIT-CAM-ARI Field Measurement Campaign

Mobile Laboratory Measurement Modes

STATIONARY SAMPLING

High time resolution point sampling Quality assurance for conventional fixed site air monitors

MOBILE SAMPLING/MAPPING

Aggregate (fleet) motor vehicle pollutant emission ratios High spatial resolution ambient background pollution distributions Point and area emission plume source location and dispersion measurements

Stationary source plume tracer flux ratio emission measurements

CHASE

On-road vehicle emissions quantification by vehicle and operating condition

Real-Time Pollutant Correlations

HCHO vs CO₂

HCHO vs CO₂ Mexico City (Merced to Xalostoc) vs Boston (Rt. 1 South)

Frequency Distribution of H₂CO Emission Ratios

Molar Fleet Emission Ratios for Gaseous Pollutants (Exhaust Pollutant Mixing Ratio/Exhaust CO2 Mixing Ratio) for New England Cities

Pollutant City		Date	Venue	Fleet Emission Ratio
NO	Boston	5/25/99	City Roads	3.7 (± 2.8) x 10 ⁻³
			Highway 1	6.2 (± 2.9) x 10 ⁻³
			Highway 2	3.6 (± 2.2) x 10 ⁻³
N ₂ O	Manchester	6/18/98	City Roads	1.56 (± .03) x 10 ⁻⁴
-			Highway	1.09 (± .03) x 10 ⁻⁴
СО	Manchester	6/18/98	City Roads	3.55 (± .94) x 10 ⁻²
			Highway	2.92 (± .66) x 10 ⁻²
CH₄	Manchester	6/18/98	City Roads	1.49 (± .09) x 10 ⁻³
			Highway	1.51 (± .58) x 10 ⁻³

KERADENE REMARCII

NO and NO₂ Correlation with CO₂ in the Exhaust of an In-Use NYC Diesel Bus

NO and NO₂ from Diesel Buses with/without CRT

NO_x Emissions From NYC Buses and Other Urban Vehicles

Bus Particle Mass Versus CO₂

Rapid Real-time Size and Composition

MTA Bus 9076

New York City Vehicle Non-Refractory Fine Particulate Emission Ratios

Chasing Experiment vs. Emission Inventory NO/CO₂ Emission Ratio

MCMA Passenger Bus PM Emissions

Chasing Experiment vs. Emission Inventory PM/CO₂ Emission Ratio

Air Toxics

	ppb H ₂ CO / ppm CO ₂ or mmol mole ⁻¹
Typical Automobiles with functioning Catalytic Conver	ter <0.1
Gasoline "Tailpipe Out"	0.2-0.4
Diesel Heavy Duty Compressed Natural Gas	<0.03- <mark>0.1</mark> ~0.5

At Altitude ~ Diesel and Gasoline emission ratios are greater Mexico Fleet, Engine Chemistry or Fuel/Air Mixture?

Summary

- Aerodyne Mobile Laboratory with Fast Response Instruments Can Characterize Urban Pollutant Emissions and High Resolution Ambient Distributions
- Mobile Emission Factors Can be Characterized for Urban Fleets as Well as Individual Vehicles Over Real-World Driving Cycles
- Mobile Air Toxics (H_2CO , CH_3CHO , C_2H_6) and PM2.5 (including PAHs, total POM, $SO_4^=$, etc.) can be quantified in realtime
- Mobile Source Emission Factors in Mexico Can Deviate Substantially from U.S. Values

Acknowledgments

<u>Aerodyne</u>

Scott Herndon Mark Zahniser Dave Nelson Barry McManus John Jayne Doug Worsnop Manjula Canagaratna Joanne Shorter

MIT

Ed Dunlea Greg McRae Luisa Molina Mario Molina

Montana State U.

Berk Knighton Todd Rodgers

Washington State U.

Gene Allwine Brian Lamb

Funding

EPA NASA NSF DOE MIT/CAM