Source Identification & Apportionment of PM via Isotope Measurements of Carbon Species (OC/EC)

L. Huang, W. Zhang, J. Brook, D. Ernst, A. Chivulescu, G. Lu, S. Sharma

Air Quality Research Branch
Atmospheric & Climate Science Directory
Meteorological Service of Canada

Why Carbonaceous aerosols?

- Regional Air Quality (health and environment issues)
- Global Climate Change
- Distribution of sources (emission inventory) & formation processes (primary and secondary) are not well understood

Tracing Source and Process via Stable Isotopes

Physical

Photochemical

Biological

 $\mathbf{R}_{\mathbf{B}} = \alpha_{\mathbf{B}-\mathbf{A}} \times \mathbf{R}_{\mathbf{A}}$

Source

Processes

 $\alpha_{\rm R-A} = R_{\rm R}/R_{\rm A}$

Measurements

The Primary Scale: **VPDB**

$$\delta^{13}C = [(R_{sam}/R_{Std}) - 1]*10^3, R = {}^{13}C/{}^{12}C$$

Implication of Isotopic Composition of Aerosols

Sources

$$\begin{split} \delta^{13}\mathbf{C^s}_{\mathsf{EC}} &= (\delta^{13}\mathbf{C^{an}}_{\mathsf{EC}} \times \mathsf{F^{an}}) + (\delta^{13}\mathbf{C^{bio}}_{\mathsf{EC}} \times \mathsf{F^{bio}}) + (\delta^{13}\mathbf{C^{fire}}_{\mathsf{EC}} \times \mathsf{F^{fire}}) + (\delta^{13}\mathbf{C^{at}}_{\mathsf{EC}} \times \mathsf{F^{at}}) \dots \\ \delta^{13}\mathbf{C^s}_1 &= (\delta^{13}\mathbf{C^{an}}_1 \times \mathsf{F^{an}}) + (\delta^{13}\mathbf{C^{bio}}_1 \times \mathsf{F^{bio}}) + (\delta^{13}\mathbf{C^{fire}}_1 \times \mathsf{F^{fire}}) + (\delta^{13}\mathbf{C^{at}}_1 \times \mathsf{F^{at}}) \dots \\ \delta^{13}\mathbf{C^s}_n &= (\delta^{13}\mathbf{C^{an}}_n \times \mathsf{F^{an}}) + (\delta^{13}\mathbf{C^{bio}}_n \times \mathsf{F^{bio}}) + (\delta^{13}\mathbf{C^{fire}}_n \times \mathsf{F^{fire}}) + (\delta^{13}\mathbf{C^{at}}_n \times \mathsf{F^{at}}) \dots \\ \delta^{13}\mathbf{C^{s}}_n &= (\delta^{13}\mathbf{C^{an}}_n \times \mathsf{F^{an}}) + (\delta^{13}\mathbf{C^{bio}}_n \times \mathsf{F^{bio}}) + (\delta^{13}\mathbf{C^{fire}}_n \times \mathsf{F^{fire}}) + (\delta^{13}\mathbf{C^{at}}_n \times \mathsf{F^{at}}) \dots \\ \delta^{13}\mathbf{C^{s}}_n &= (\delta^{13}\mathbf{C^{an}}_n \times \mathsf{F^{an}}) + (\delta^{13}\mathbf{C^{bio}}_n \times \mathsf{F^{bio}}) + (\delta^{13}\mathbf{C^{fire}}_n \times \mathsf{F^{fire}}) + (\delta^{13}\mathbf{C^{at}}_n \times \mathsf{F^{at}}) \dots \\ \delta^{13}\mathbf{C^{s}}_n &= (\delta^{13}\mathbf{C^{an}}_n \times \mathsf{F^{an}}) + (\delta^{13}\mathbf{C^{bio}}_n \times \mathsf{F^{bio}}) + (\delta^{13}\mathbf{C^{fire}}_n \times \mathsf{F^{fire}}) + (\delta^{13}\mathbf{C^{at}}_n \times \mathsf{F^{at}}) \dots \\ \delta^{13}\mathbf{C^{s}}_n &= (\delta^{13}\mathbf{C^{an}}_n \times \mathsf{F^{an}}) + (\delta^{13}\mathbf{C^{bio}}_n \times \mathsf{F^{bio}}) + (\delta^{13}\mathbf{C^{fire}}_n \times \mathsf{F^{fire}}) + (\delta^{13}\mathbf{C^{at}}_n \times \mathsf{F^{at}}) \dots \\ \delta^{13}\mathbf{C^{s}}_n &= (\delta^{13}\mathbf{C^{an}}_n \times \mathsf{F^{an}}) + (\delta^{13}\mathbf{C^{bio}}_n \times \mathsf{F^{bio}}) + (\delta^{13}\mathbf{C^{fire}}_n \times \mathsf{F^{fire}}) + (\delta^{13}\mathbf{C^{at}}_n \times \mathsf{F^{at}}) \dots \\ \delta^{13}\mathbf{C^{s}}_n &= (\delta^{13}\mathbf{C^{an}}_n \times \mathsf{F^{an}}) + (\delta^{13}\mathbf{C^{bio}}_n \times \mathsf{F^{an}}) + (\delta^{13}\mathbf{C^{bio}}_n \times \mathsf{F^{an}}) + (\delta^{13}\mathbf{C^{bio}}_n \times \mathsf{F^{an}}) + (\delta^{13}\mathbf{C^{an}}_n \times \mathsf{F^{an}}) + (\delta^$$

Implication of Isotope Analysis in Temperature Profiles of Carbonaceous Aerosols

Organic Carbon (OC)

- Condensed outside of the core as the coating;
- Could be primary or secondary aerosols;
- Thermally released at relatively low temperature;
- The isotopic composition reflects mainly process information.

Carbonate Carbon (CC)

- Usually from soil dust /cement;
- Thermally decomposed at high temperature.

Black Carbon (BC) **or Elemental Carbon** (EC)

- Located at the core;
- Usually considered as primary aerosols;
- Oxidized at relatively high temperature stage;
- The isotopic composition reflects mainly source information.

* The distributions of carbon isotopic composition in a temperature profile may release the information on the sources and the processes of PM.

The Schematic of OC/EC Measurement in Aerosols

(by Thermal Desorption-Optical Method)

Schematic of On-line Isotope Measurement System for OC/EC in Aerosols

Thermograph for OCs, CC and EC Separation & Standards

Comparison of δ^{13} C values of OC & EC Standards

(On-line Method vs. Off-line Method)

Isotope compositions in Source Profile and Ambient Air

(Pacific2001 Campaign at Vancouver, BC)

Isotopic Compsition of Background Air

OC/EC Abundances and Isotopic Compositions in Ambient PM and Their Sources

Source Apportionment via Isotope Measurements in OC/EC of PM

Summary

 Stable isotopic compositions of OC/EC in aerosols can be measured via coupling an OC/EC analyzer with GC-IRMS

- Overall accuracy: \sim 0.3 % - Overall precision: \sim 0.3 %

- There are obvious different patterns in distributions of carbon components and their isotopic compositions between a biogenic source (Golden Ears) and an anthropogenic source (Cassiar Tunnel):
 - the δ^{13} C value of EC in tunnel samples tends to be close to the value of OC, indicating very small isotopic fractionation between different components in high temperature processes;
 - the δ^{13} C value of EC in the forest samples is obviously different from that of OC. The reason is not well understood yet;
 - the δ^{13} C value of OC/EC in aircraft samples are very close to those of Alert samples, indicating **homogeneous isotope composition of free troposphere aerosols**;

It is suggested that combining EC concentration and the isotope compositions of OC/EC can provide valuable information to source identification and apportionment for ambient aerosols.

Acknowledgement

- Pacific 2001 Project from MSC for financing;
- R. Leaitch's group, K. Anlurf, L. Grahem for **sampling** at Pacific 2001;
- S. Irei for assisting sample analysis;
- D. Lane for sharing instrument;
- Dr. B. E. McCarry for **sharing** carbon black **standards**;
- L. Grahem and T. Harner for sharing samples;
- S.M. Li, and R. Leaitch for valuable discussion.

The End