Measurements of Marine Vessel Emissions

- E. J. Williams*, B.M. Lerner*, A. M. Middlebrook, J. F. Meagher, F. C. Fehsenfeld* NOAA/Aeronomy Lab. and *CIRES/Univ. of Colorado; Boulder, CO
 - MVE: Description and Significance
 - Measurements of Different Vessels
 - Emission Factors: Data vs. References
 - Particulate emissions

The New England Air Quality Study

NEAQS is a multi-laboratory effort focused on understanding the factors that affect air quality in this region.

NEAQS 2002 used a network of ground-based observing sites, the DOE G1 aircraft, and the NOAA research ship Ronald H. Brown (above). The ship was equipped to measure a wide variety of gas-phase and aerosol species, meteorological parameters, and vertical profiles of ozone, aerosols, wind, and temperature.

In the summer of 2004 NEAQS will be part of a larger study, called ICARTT, that will examine the transport and transformations of pollutants from North America across the Atlantic Ocean to Europe.

Inventory Development for Marine Vessel Emissions

Classification: mobile, non-road

Emissions inventory development:

- 1) emissions factors (fuel-based; load-based)
- 2) activity factors (fuel use; time in mode)
- 3) location information (ports, waterways; seaways)

Earlier EPA inventory work: Fuel-based emission factors (AP-42; ca. 1985) Allocate all emissions to port where fueling occurred

Current EPA inventory: Fuel-based factors (AP-42) Emissions allocated by fuel use Distillate: 75% in port; Residual: 25% in port

Inventory uncertainties: Emission factors are significant!! Evaluate under operating conditions

Marine Vessel Propulsion Characteristics

Slow-speed diesel: (SSD)	55% of total fleet: ~58,000 vessels (>95% commer.) low-grade residual fuel ("bunkers"; high S; cheap!) power: < 10 MW up to ~100 MW directly coupled to propeller shaft (~130 rpm)
Medium-speed diesel: (MSD)	40% of total fleet: ~42,000 vessels (40% military) uses residual or distillate fuels; power: ~1 - 20 MW diesel-electric - motor powers propeller shaft coupled via gears to propeller (130-2000 rpm)
Steam-turbine engines:	<5% of total fleet: ~5,000 vessels (70% military) uses distillate or residal fuels or blend steam generation drives turbine; powers prop.

[Ref.: Corbett and Fishbeck, Science, 278, 31 October 1997; and refs therein]

Marine Vessel Emission Characteristics

N emissions: mostly from combustion (temperature dependent) S emissions: from fuel S-content (typically <1% to 5% by weight) C emissions: virtually complete combustion!! $(CO/CO_2 << 1\%)$ soot; organic (unburned fuel; lube oils); some S Particulate: Global N-emissions: 3.08 TgN/yr (~14% of total fossil fuel source) (~100% of U.S. mobile sources) 0.25 TgN/yr (~7% of U.S. mobile source) **U.S. N-emissions:** Global S-emissions: 4.24 TqS/yr (~5% of total fossil fuel source) (~20% of global DMS source)

BUT, shipping patterns and activities matter a lot: MVE are heavily skewed toward the Northern Hemisphere Meteorology has strong influence on fate of emissions Port activities are crucial (Port of LA: Alt. Marine Power)

Emission Factor Calculations

Assume: Average fuel C content: 86±0.5% C or 13.9±0.1 g fuel/mole C [Average fuel N content: 0.3±0.2%] [Average fuel S content: 1.5±1.2%] [Source: Lloyd's Register, 1995]

E.F. = $\underline{ppmv NO_y * 46e-3 kg NO_x/mole NO_y * 1000 kg}$ = Slope * 3.31(±0.02) (NO_x) ppmv CO₂ * 13.9e-3 kg fuel/mole CO₂ * tonne fuel

E.F. = $ppmv SO_2 * 64e-3 kg SO2/mole SO_2 * 1000 kg$ = Slope * 4.60(±0.03) (SO₂) ppmv CO₂ * 13.9e-3 kg fuel/mole CO₂ * tonne fuel

Marine Vessels: Emission Factor Data

(per 1000kg [tonne] fuel)							
Date	Time	kg NO _x	kg SO ₂	Vessel type			
18 Jul	1035	49(±2)*	~5	Cruise ship			
19 Jul	1055	83(±4)	0.7(±0.09)	Fishing vessel			
30 Jul	2230	75(±2)	0.7(±0.04)	Casino boat			
6 Aug	1155	60(±1)*	19(±1)	Tanker			
8 Aug	2230	95(±4)**	22(±1)	Container & Freighter			
8 Aug	2320	39(±4)*	6(±0.5)	Deep-water tanker			
8 Aug	2335	67(±7)*	11(±2)	Container			
9 Aug	0015	41(±5)*	5(±0.7)	Container			
9 Aug	0115	81(±7)*	17(±3)	Freighter			
Average		56±16*	11±6*				
		{62±21}**	{12±7} **				

Marine Vessels: Emission Factor Data

		(per 1000kg [tonne] fuel)		
Source		kg NO _x	kg SO ₂	
Lloyd's Register of	Shipping, 1995	87 (SSD)	20 X % S	
Marine Exhaust Em	nission Research Program	57 (MSD)		
Booz-Allen & Hamilton, Inc., 1991		78	22 X % S	
Inventory of Air Po	llutant			
Emissions from Ma	rine Vessels			
Environment Canada		39 - 179	{4.7 - 64}	
Port of Vancouver	Marine Vessel		{calc'd}	
Emissions Test Pro	ogram			
THIS WORK: A	VERAGE	56	11	
(R	ANGE	39 - 95	5 - 22)	

Significance of Emission Factor Measurements

Emission factors are key element in inventory development and can be significant source of uncertainty

Measured factors for N are reasonably consistent with literature data:

- 1) if these data are representative, existing factors may be high
- 2) measured factors appropriate to "underway" conditions: med.-high load
- 3) N emissions drop significantly for idle conditions: need data here

Measured S emission factors seem low, but need fuel S content information

Particulate emission factors?

Particulate Sulfate Emissions

Plume transit time of 20-30 minutes implies conversion rate >10% per hour, but "typical" heterogeneous conversion rates for SO₂ are 0.5 - 2% per hour.

Possible fast sulfate production: 1) excess O₂ in exhaust and SO₃ chemistry 2) catalyzed SO₂ conversion on particles

Plans for NEAQS 2004

- Improvements to instruments: New fast-response CO instrument Improved SO₂ instrument response
- Ship-plume studies:

Successive downwind intercepts to evaluate chemistry: aging; dispersion Targets of opportunity: emission factors Smaller vessels: high CO, NO_x; no SO₂

Conclusions

- Ship-based measurements are an effective means of evaluating emissions of marine vessels under operating conditions
- Characteristics of individual vessels readily apparent
- "Under-way" emission factor measurements are reasonably consistent with literature data
- More data needed at different load conditions (in 2004!): slow speed; idle ("hotelling")
- Fast sulfate production/emissions in some ship plumes